An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension

نویسندگان

  • Alex da Rosa
  • Ricardo J. G. B. Campello
  • Wagner Caradori do Amaral
چکیده

A new solution for the problem of selecting poles of the two-parameter Kautz functions in Volterra models is proposed. In general, a large number of parameters are required to represent the Volterra kernels, although this difficulty can be overcome by describing each kernel using a basis of orthonormal functions, such as the Kautz basis. This representation has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping represented by the Volterra series. The resulting Wiener/Volterra model can be truncated into fewer terms if the Kautz functions are properly designed. The underlying problem is how to select the arbitrary complex poles that fully parameterize these functions. This problem has been approached in previous research by minimizing an upper bound for the error resulting from the truncation of the kernel expansion. The present paper goes even further in that each multidimensional kernel is decomposed into a set of independent Kautz bases, each of which is parameterized by an individual pair of conjugate Kautz poles intended to represent the dominant dynamic of the kernel along a particular dimension. An analytical solution for one of the Kautz parameters, valid for Volterra models of any order, is derived. A simulated example is presented to illustrate these theoretical results. The same approach is then used to model a real nonlinear magnetic levitation system with oscillatory behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal selection of free parameters in expansions of Volterra models using Kautz functions

A new solution for the problem of selecting poles of the two-parameter Kautz functions in Volterra models of any order is proposed. The usual large number of parameters required to represent the Volterra kernels can be reduced by describing each kernel using a basis of orthonormal functions, such as the Kautz basis. The resulting model can be truncated into fewer terms if the Kautz functions ar...

متن کامل

A note on the optimal expansion of Volterra models using Laguerre functions

This work tackles the problem of expanding Volterra models using Laguerre functions. A strict global optimal solution is derived when each multidimensional kernel of the model is decomposed into a set of independent orthonormal bases, each of which parameterized by an individual Laguerre pole intended for representing the dominant dynamic of the kernel along a particular dimension. It is proved...

متن کامل

Optimal expansions of discrete-time Volterra models using Laguerre functions

This work is concerned with the optimization of Laguerre bases for the orthonormal series expansion of discrete-time Volterra models. The aim is to minimize the number of Laguerre functions associated with a given series truncation error, thus reducing the complexity of the resulting finite dimensional representation. Fu and Dumont [14] indirectly approached this problem in the context of linea...

متن کامل

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

متن کامل

Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions

The present paper involves the approximation of nonlinear systems using Wiener/Volterra models with Kautz orthonormal functions. It focuses on the problem of selecting the free complex pole which characterizes these functions. The problem is solved by minimizing an upper bound of the error arising from the truncated approximation of Volterra kernels using Kautz functions. An analytical solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Control

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2008